Structural genomics of histone tail recognition
نویسندگان
چکیده
SUMMARY The structural genomics of histone tail recognition web server is an open access resource that presents within mini articles all publicly available experimental structures of histone tails in complex with human proteins. Each article is composed of interactive 3D slides that dissect the structural mechanism underlying the recognition of specific sequences and histone marks. A concise text html-linked to interactive graphics guides the reader through the main features of the interaction. This resource can be used to analyze and compare binding modes across multiple histone recognition modules, to evaluate the chemical tractability of binding sites involved in epigenetic signaling and design small molecule inhibitors. AVAILABILITY http://www.thesgc.org/resources/histone_tails/ CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Structural basis of molecular recognition of helical histone H3 tail by PHD finger domains
The plant homeodomain (PHD) fingers are among the largest family of epigenetic domains, first characterized as readers of methylated H3K4. Readout of histone post-translational modifications by PHDs has been the subject of intense investigation; however, less is known about the recognition of secondary structure features within the histone tail itself. We solved the crystal structure of the PHD...
متن کاملStructural Chemistry of Human SET Domain Protein Methyltransferases
There are about fifty SET domain protein methyltransferases (PMTs) in the human genome, that transfer a methyl group from S-adenosyl-L-methionine (SAM) to substrate lysines on histone tails or other peptides. A number of structures in complex with cofactor, substrate, or inhibitors revealed the mechanisms of substrate recognition, methylation state specificity, and chemical inhibition. Based on...
متن کاملStructural basis for acetylated histone H4 recognition by the human BRD2 bromodomain.
Recognition of acetylated chromatin by the bromodomains and extra-terminal domain (BET) family proteins is a hallmark for transcriptional activation and anchoring viral genomes to mitotic chromosomes of the host. One of the BET family proteins BRD2 interacts with acetylated chromatin during mitosis and leads to transcriptional activation in culture cells. Here, we report the crystal structures ...
متن کاملStructural cooperativity in histone H3 tail modifications.
Post-translational modifications of histone H3 tails have crucial roles in regulation of cellular processes. There is cross-regulation between the modifications of K4, K9, and K14 residues. The modifications on these residues drastically promote or inhibit each other. In this work, we studied the structural changes of the histone H3 tail originating from the three most important modifications; ...
متن کاملNickel binding to histone H4.
Nickel compounds influence carcinogenesis by interfering with a variety of cellular targets. It has been found that nickel is a potent inhibitor in vivo of histone H4 acetylation, in both yeast and mammalian cells. It has preference to specific lysine residues in the H4 N-terminal -S(1)GRGK(5)GGK(8)GLGK(12)GGAK(16)RH(18)RKVL(22) tail, in which the sites of acetylation are clustered. About the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2010